
ARTICLE IN PRESS
0022-5193/$ - se

doi:10.1016/j.jtb

�Correspond
E-mail addr
Journal of Theoretical Biology 247 (2007) 259–265

www.elsevier.com/locate/yjtbi
Prediction of membrane protein types from sequences and
position-specific scoring matrices

Xian Pua, Jian Guob,�, Howard Leunga, Yuanlie Linb

aDepartment of Computer Sciences, The City University of Hong Kong, Hong Kong
bLaboratory of Statistical Computation, Department of Mathematical Sciences, Tsinghua University, China

Received 27 July 2006; received in revised form 22 December 2006; accepted 18 January 2007

Available online 30 January 2007
Abstract

Membrane protein plays an important role in some biochemical process such as signal transduction, transmembrane transport, etc.

Membrane proteins are usually classified into five types [Chou, K.C., Elrod, D.W., 1999. Prediction of membrane protein types

and subcellular locations. Proteins: Struct. Funct. Genet. 34, 137–153] or six types [Chou, K.C., Cai, Y.D., 2005. J. Chem. Inf. Modelling

45, 407–413]. Designing in silico methods to identify and classify membrane protein can help us understand the structure and function of

unknown proteins. This paper introduces an integrative approach, IAMPC, to classify membrane proteins based on protein sequences

and protein profiles. These modules extract the amino acid composition of the whole profiles, the amino acid composition of N-terminal

and C-terminal profiles, the amino acid composition of profile segments and the dipeptide composition of the whole profiles. In the

computational experiment, the overall accuracy of the proposed approach is comparable with the functional-domain-based method.

In addition, the performance of the proposed approach is complementary to the functional-domain-based method for different

membrane protein types.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Membrane proteins are those proteins which locate
around cell membranes and execute crucial biological
functions related to the cell membrane (such as signal
transduction, ion transmembrane transport, etc.). Accord-
ing to Chou and Elrod (1999), membrane proteins can be
generally classified as five main types: (1) type-I membrane
protein; (2) type-II membrane protein; (3) multipass
transmembrane proteins; (4) lipid chain-anchored mem-
brane proteins; and (5) GPI-anchored membrane proteins.
The above five types are defined by their modes associated
with the lipid bilayer and by their biological functions.

Since the analysis of membrane protein by molecular
biology experiment is time-consuming and labor-intensive,
an automatic, efficient and effective method to identify
(whether is the unknown protein a membrane protein) and
e front matter r 2007 Elsevier Ltd. All rights reserved.
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classify (which type does the identified membrane protein
belong to) membrane protein is desired. This paper focuses
on the second problem.
The pioneering work about classification of membrane

protein from the protein sequence was explored by Chou
and Elrod (1999). After that, a number of methods were
introduced to improve the classification performance. For
example, the set of methods based on pseudo amino acid
composition (PseAA) was originally proposed by Chou
(2001) to extract information through a set of discrete
correlation factors and various biochemical properties (Cai
et al., 2004; Chou, 2000; Chou and Cai, 2003b, 2005b;
Feng, 2001, 2002; Feng and Zhang, 2000; Gao et al., 2005;
Pan et al., 2003; Shen and Chou, 2005; Shen et al., 2006;
Sun and Huang, 2006; Wang et al., 2004, 2005; Wen et al.,
2006; Xiao et al., 2005, 2006a; Zhou and Doctor, 2003).
The set of methods (Cai and Chou, 2004, 2006; Cai et al.,
2003; Chou and Cai, 2002, 2003a, 2004, 2005a, b; Zhang
et al., 2006) based on protein functional annotation
used the protein sample representation derived from a
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higher-level database, such as functional domain (FunD)
database, Interpro database, gene ontology (GO) database,
or their combinations. Recently, Liu et al. (2005)
introduced a Fourier spectrum representation for mem-
brane protein classification (Guo et al., 2006; Liu et al.,
2005).

This paper introduced an integrated approach, IAMPC
(Integrated Approach for Membrane Protein Classifica-
tion), to predict membrane protein types from their
sequences and profiles. IAMPC is composed of five
modules, each of which extracts a particular feature from
the protein sequences or profiles to train and test an
individual support vector machine (SVM) classifier. The
outputs from the five modules are combined by another
SVM classifier for the final decision. On the same data set,
the overall accuracy of IAMPC is comparable with the
functional-domain-based method proposed by Cai and
Chou (2006) and the performance of IAMPC is comple-
mentary to the functional-domain-based method for
different membrane types.

2. Materials and methods

2.1. Data sets

The data set used to test the performance of IAMPC was
created by Cai and Chou (2006). The data set was extracted
from UniProt/Swiss-Prot Release 44 database by the
following procedures (Cai and Chou, 2006; Chou and
Elrod, 1999). (1) Selected those proteins with explicitly
clear description of type I, type II, multipass, lipid-chain
anchored, and GPI-anchored, i.e., excluded those with
ambiguous annotations, such as ‘‘probable’’, ‘‘potential’’,
and ‘‘by similarity’’. (2) Retained only one of the proteins
with same name but different species. (3) Removed those
proteins with the description of more than one type. (4)
Removed those proteins with less than 50 residues. (5)
Removed redundant proteins to promise that any pair of
proteins in the data set has an identity less than 25%.
In fact, this data set was a more strict version of the
data set proposed by Chou and Cai (2005b). The final data
set included 2763 sequences which were composed of 219
type-1 membrane proteins, 140 type-2 membrane proteins,
2137 multi-pass transmembrane proteins, 195 lipid chain-
anchored membrane proteins, and 72 GPI-anchored
membrane proteins.

2.2. Support vector machine

The support vector machine (SVM) is a widely used
classification method based on the statistical learning
theory. Here we briefly introduce its basic idea and
interested readers can refer to Vapnik’s (1995) book for
more details.

Suppose we have a number of samples, each of which
can be represented by a feature vector: xi 2 Rd with labels
yi 2 fþ1;�1g, ði ¼ 1; . . . ;NÞ. Here þ1 and �1 indicate the
two classes. Our goal is to best predict yi according to
the feature vector xi, i.e., to find an appropriate map from
Rd to fþ1;�1g so as to minimize the classification error.
The SVM first maps the input vector x 2 Rd into a high
dimensional Hilbert space FðxÞ 2H to construct an
optimized separating hyperplane. The hyperplane max-
imizes the margin, which is the largest distance between the
hyperplane and the nearest data points of each class in the
Hilbert space.
The decision function of SVM can be denoted as follows:

f ðxÞ ¼
XN

i¼1

yiaiKðx;xiÞ þ b, (1)

where Kðx;xiÞ is called kernel function, representing the
inner product in the Hilbert space, and the coefficient ai is
computed by solving the following convex quadratic
programming problem:

Maximize:
XN

i¼1

ai �
1

2

XN

i¼1

XN

j¼1

aiajyiyjKðxi; xjÞ

Subject to:
XN

i¼1

aiyi ¼ 0; i ¼ 1; . . . ;N ; 0paipC. (2)

In Eq. (2), C is called regularization parameter which
controls the trade off between: margin maximization and
the classification errors and those xi ði ¼ 1; . . . ;NÞ corre-
sponding to ai40 are called support vectors.
Some commonly used kernel functions are listed as

follows:

Kðx; yÞ ¼ hx; yi, (3)

Kðx; yÞ ¼ ð1þ hx; yiÞd , (4)

Kðx; yÞ ¼ expð�gkx� yk2Þ, (5)

where hx; yi represents the inner product of x and y. Eq. (3)
is called linear kernel, Eq. (4) is called polynomial kernel,
and Eq. (5) is called radial basis kernel (RBF kernel).
In this paper, only the RBF kernel was used to train to

test the SVM classifiers. The kernel parameter g and the
regularization parameter C are optimized individually and
listed in Table 1.

2.3. Position-specific scoring matrix

Each protein sequence (called query sequence) in the
proposed data set was used as a seed to search the
homogenous sequences from the SWISSPROT 46.0
(Boeckmann et al., 2003) protein database using the PSI-
BLAST program (Altschul et al., 1997) with parameters h

and j being 0.001 and 3, respectively. These aligned
sequences share some homogenous segments and belong
to the same protein family. The aligned sequences were
further converted into position-specific scoring matrices
(PSSMs) to express their homogenous information. PSSM
is a matrix with 20 rows and L columns, where L is the
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Table 1

The optimized RBF kernel parameter g and regularization parameter C

Parameter Module Module Module Module Module Fusion

1 2 3 4 5

g 0.4 0.05 0.07 40 140 0.4

C 10 13 9 10 10 0.1
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total number of the amino acids in the query sequence.
Each column of a PSSM represents the log-likelihood of
the residue substitutions at the corresponding position in
the query sequence (Altschul et al., 1997). The ði; jÞth entry
of the matrix represents the chance of the amino acid in the
jth position of the query sequence being mutated to amino
acid type i during the evolution process. In this paper, the
columns of each PSSM was normalized such that the sum
of the squares of elements in each column added up to one.
These PSSMs were used by module 1–module 4 of IAMPC.

For convenience, let us denote

PðiÞ ¼ ½p
ðiÞ
1 ; p

ðiÞ
2 ; . . . ; p

ðiÞ

lðiÞ
�

as the PSSM of the ith sequence, where

p
ðiÞ
j ¼ ½p

ðiÞ
j;1; p

ðiÞ
j;2; . . . ; p

ðiÞ
j;20�

T; 1pjplðiÞ,

and lðiÞ is the total number of amino acids of the ith
sequence.

2.4. Modules of IAMPC

IAMPC is composed of five modules, each of which extract
a particular feature from PSSM or from protein sequence.
The details of these modules are introduced as follows.

2.4.1. Module 1

This module extracts the amino acid composition from
the entire PSSM. Denote

xðiÞ ¼ ½x
ðiÞ
1 ;x

ðiÞ
2 ; . . . ; x

ðiÞ
20�,

as a 20-dimensional feature vector extracted from the
ith protein by this module. x

ðiÞ
k ð1pkp20Þ is the composi-

tion of the kth amino acid in the ith PSSM. It is calculated
as follows:

x
ðiÞ
k ¼

1

lðiÞ

XlðiÞ

j¼1

p
ðiÞ
j;k, (6)

where lðiÞ is the number of amino acids in the ith protein.

2.4.2. Module 2

Module 2 uses the similar extraction approach as module
1 but it only computes the amino acid composition in
N-terminus and C-terminus of the PSSM. Specifically,
denote the amino acid composition in the N-terminus and
the C-terminus of the PSSM of the ith protein as

yðiÞ ¼ ½y
ðiÞ
1 ; y

ðiÞ
2 ; . . . ; y

ðiÞ
20�,
and

zðiÞ ¼ ½z
ðiÞ
1 ; z

ðiÞ
2 ; . . . ; z

ðiÞ
20�,

respectively. Then y
ðiÞ
k ð1pkp20Þ is calculated as follows:

y
ðiÞ
k ¼

1

LN

XLN

j¼1

p
ðiÞ
j;k, (7)

and z
ðiÞ
k ð1pkp20Þ is calculated as follows:

z
ðiÞ
k ¼

1

LC

XlðiÞ

j¼lðiÞ�LCþ1

p
ðiÞ
j;k, (8)

where LN and LC are the numbers of amino acids in the
N-terminus and C-terminus of the ith protein. Then the
feature vector extracted by this module is defined as

x� y� z ¼ ½x
ðiÞ
1 ; . . . ;x

ðiÞ
20; y

ðiÞ
1 ; . . . ; y

ðiÞ
20; z

ðiÞ
1 ; . . . ; z

ðiÞ
20�, (9)

where � is the operator of the concatenation. In this paper,
the length of the N-terminus LN equals to 50 and the length
of the C-terminus LC equals to 40.
2.4.3. Module 3

This module assumes that different segments of PSSM
have different amino acid distributions and provide
complementary information for the prediction. The seg-
ment of a PSSM is defined as a matrix comprising of a
number of consecutive columns of the PSSM. In this paper,
the PSSM is divided into ns segments with almost equal
number of columns. For the ith protein with length
(number of amino acid) lðiÞ, denote ls as the integral value
of lðiÞ divided by ns. Then the amino acid composition in
the gth segment (1pgpns) is represented as

vðiÞg ¼ ½v
ðiÞ
g;1; v

ðiÞ
g;2; . . . ; v

ðiÞ
g;20�.

If 1pgpns � 1, the amino acid composition in the gth
segment of the ith protein is calculated as follows:

v
ðiÞ
g;k ¼

1

ls

Xg�ls

j¼ðg�1Þ�lsþ1

pj;k, (10)

where 1pkp20. If g ¼ ns, the amino acid composition in
the gth segment of the ith protein is calculated as follows:

v
ðiÞ
g;k ¼

1

lðiÞ � ðns � 1Þ � ls

XlðiÞ

j¼ðns�1Þ�lsþ1

pj;k. (11)

The last segment has more columns than the first ns � 1
segments when lðiÞ is not divisible by ns. Then feature vector
of the ith protein vðiÞ is the concatenation of the amino acid
composition of all segments.

vðiÞ ¼ v
ðiÞ
1 � v

ðiÞ
2 � � � � � vðiÞns

, (12)

where � is the operator of the concatenation. In this paper,
the parameter ns equals to 3.
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2.4.4. Module 4

This module extracts the dipeptide composition in the
PSSMs. Since there are 20� 20 combinations of the
dipeptides, the feature vector of this module is defined as
a 400-dimensional vector (Chou and Elrod, 1999; Liu and
Chou, 1999):

xðiÞ ¼ ½x
ðiÞ
1;1; . . . ;x

ðiÞ
1;20;x

ðiÞ
2;1; . . . ;x

ðiÞ
2;20; . . . ;x

ðiÞ
20;1; . . . ;x

ðiÞ
20;20�,

then xðiÞu;v ð1pu; vp20Þ is calculated as follows:

xðiÞu;v ¼
1

lðiÞ � 1

XlðiÞ�1

j¼1

p
ðiÞ
j;u:� p

ðiÞ
j;v. (13)

2.4.5. Module 5

This module extract features directly from the protein
sequences rather than from the PSSMs like the previous
four modules. The residue-couple composition of the
protein sequence is extracted (Guo et al., 2005). The
residue-couple is defined as a pair of amino acids in the
proteins sequence consecutively or segregated by arbitrary
amino acids. The consecutive amino acid pair is called
rank-0 residue-couple, the amino acid pair segregated by 1
arbitrary amino acid is called rank-1 residue-couple, and
by analogy, the amino acid pair segregated by m arbitrary
amino acid is called rank-m residue-couple, where m is any
non-negative integer. The rank-m residue-couple composi-
tion is a 400-dimensional vector with each entry represent-
ing the frequency of the occurrence of a particular rank-m
residue-couple.1

Denote the rank-m residue-couple composition
(0pmpnrc) of the ith protein as follows:

xðiÞm ¼ ½x
ðiÞ
m;1;1; . . . ;x

ðiÞ
m;s;t; . . . ;x

ðiÞ
m;20;20�,

where 1ps; tp20. The entry x
ðiÞ
m;s;t represents the frequency

of occurrence of the rank-m residue-couple with the front
amino acid being type s and the back amino acid being type
t. Then x

ðiÞ
m;s;t is calculated as follows:

x
ðiÞ
m;s;t ¼

1

lðiÞ �m� 1

XlðiÞ�m�1

j¼1

Is;tðj; j þmþ 1Þ, (14)

where lðiÞ is the length of the ith protein and Is;tðj; j þmþ

1Þ ¼ 1 if the type of the jth amino acid (j is counted from
the N-terminus of the sequence) is s and the type of the
ðj þmþ 1Þth amino acid is t and Is;tðj; j þmþ 1Þ ¼ 0
otherwise.

The feature vector extracted by this module is denoted as
follows:

xðiÞm ¼ x
ðiÞ
0 � x

ðiÞ
1 � � � � � xðiÞnrc

, (15)

where � is the operator of the concatenation. In this paper,
nrc ¼ 5.
1There are 20 types of amino acid, so the number of possible types of

residue-couple is 20� 20 ¼ 400.
2.5. SVM fusion

The fusion step attempts to integrate different informa-
tion extracted by each module. There are different ways to
implement the fusion process. For a multi-classification
problem, the simplest way is voting, which classifies the
sample to the class with the majority vote. In this paper, the
SVM fusion method was used to implement the fusion
process.
The SVM fusion uses the SVM as a classifier to re-

classify the outputs from all modules. Specifically, the
ith protein is predicted by module 1–module 5 and the
output of the mth module (1pmp5) is represented as a
h-dimensional binary vector (h is the number of class).

wðiÞm ¼ ½w
ðiÞ
1;m;w

ðiÞ
2;m; . . . ;w

ðiÞ
h;m�.

If the ith protein is predicted to class q ð1pqphÞ by the
mth module, the entry wðiÞq;m is 1 and other h� 1 entries are
0. Then the feature vector is defined as

wðiÞ ¼ w
ðiÞ
1 � w

ðiÞ
2 � � � � � w

ðiÞ
5 , (16)

where � represents the simple concatenation of two
vectors. The feature vectors are used to train the SVM
classifier for the fusion. The structure of IAMPC is
illustrated in Fig. 1.

2.6. Assessment of performance

The leave-one-out cross validation (jackknife test) and
k-fold cross validation are widely used to evaluate the
performance of a method on a data set. The former is more
rigorous and objective as elucidated in a comprehensive
review (Chou and Zhang, 1995) and a series of follow-up
papers (Feng, 2001, 2002; Guo et al., 2006; Liu et al., 2005;
Luo et al., 2002; Shen and Chou, 2005; Shen et al., 2005;
Sun and Huang, 2006; Wang et al., 2005; Xiao et al., 2005,
2006b; Zhou, 1998; Zhou and Assa-Munt, 2001; Zhou and
Cai, 2006; Zhou and Doctor, 2003). However, the jackknife
test is time-consuming so we used the 5-fold cross
validation instead. In a 5-fold cross validation trial, the
original data set was randomly divided into 5 subsets. Each
Input

Fig. 1. The structure of the proposed prediction system.
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subset was singled out in turn as a testing set, and the
remaining ones were merged to train the classifier. The
process was iterated five times until every subset has been
used for testing and the prediction results from all
iterations were averaged. The overall accuracy (OA), the
accuracy for each class (Acc), and the Matthew’s correla-
tion coefficient (MCC) (Matthews, 1975) were used to
assess the prediction result. MCC allows us to overcome
the shortcoming of accuracy (Acc) on unbalanced data.
For example, if the number of the positive samples are
much larger than that of the negative samples, a classifier
is easy to predict all samples as positive. Significantly
it is not a good classifier because it predicts all negative
samples incorrectly. In this case, the accuracy and MCC
of the positive class are 100% and 0, respectively. There-
fore, MCC is a better measure for unbalanced data
classification.

Denote M 2 RC�C as the confusion matrix of the
prediction result, where h is the number of classes. Then
M i;j (1pi; jph) represents the number of proteins that
actually belong to class i but are predicted as class j. We
further denote

pc ¼Mc;c; qc ¼
Xh

i¼1;iac

Xh

j¼1;jac

M i;j,

rc ¼
Xh

i¼1;iac

M i;c; sc ¼
Xh

j¼1;jac

Mc;j , (17)

where c (1pcph) is the index of a particular class. For
class c, pc is the number of true positive samples, qc is the
number of true negative samples, rc is the number of false
positive samples, and sc is the number of false negative
samples. Based on the notations above, the OA, the
accuracy of class c (Accc), and the Matthew’s correlation
coefficient of class c (MCCc) are

OA ¼

Ph
c¼1 Mc;cPh

i¼1

Ph
j¼1 M i;j

, (18)
Table 2

Membrane type Module 1 Module 2 Module 3

Acc(%) MCC Acc(%) MCC Acc(%)

Type-I 70.7 0.68 78.2 0.78 77.3

Type-II 47.0 0.50 57.0 0.63 58.9

Multipass 96.3 0.76 97.0 0.80 96.7

Lipid 68.6 0.68 78.9 0.79 75.8

GPI 27.8 0.38 54.2 0.61 37.5

Overall 88.2 – 91.3 – 90.5

Type-I: Type-I membrane protein; Type-II: Type-II membrane protein; m

membrane protein; GPI: GPI-anchored membrane protein.
Accc ¼
Mc;cPh
j¼1 Mc;j

, (19)

MCCc ¼
pcqc � rcscffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpc þ scÞðpc þ rcÞðqc þ scÞðqc þ rcÞ
p . (20)
3. Result and discussion

3.1. Result of every module

The prediction result of the five individual modules and
the result of the SVM fusion were listed in Table 2. Module
1 only uses the amino acid composition of the profiles (the
least information among modules 1–module 4) so it should
be regarded as the baseline of the prediction. Module 2
used the amino acid composition of the N-terminus of the
profiles, the C-terminus of the profiles and the whole
profiles. The overall accuracy of module 2 reached 91.3%,
which was 3.1% higher than that of module 1. The most
significant improvement came from the GPI-anchored
membrane proteins, for which the accuracy improved by
26.4%. The improvement was consistent with the biologi-
cal knowledge. For example, because the C-terminus of
the GPI-anchor membrane protein binds to the cell
membrane by GPI-anchor, the amino acid composition
of the C-terminus of the protein is very important for the
classification. The improvement for the multipass trans-
membrane protein was minor because multipass trans-
membrane structure occurs in the middle part of the
protein. The improvement implies that N-terminus and
C-terminus of the protein can provide complementary
information to improve the prediction. Module 3 used the
amino acid composition of all segments of the profiles. The
overall accuracy of module 3 reached 90.5%, which is 2.3%
higher than that of module 1. Module 4 extracted the
dipeptide composition of the profiles, which can be
regarded as an extension of module 1. The overall accuracy
of module 4 only improved 1.2% compared with module 1,
while the accuracies of different membrane protein types of
module 1 were similar to those of module 2. Unlike the
Module 4 Module 5 Fusion

MCC Acc(%) MCC Acc(%) MCC Acc(%) MCC

0.75 73.8 0.70 65.3 0.65 83.1 0.82

0.60 54.3 0.58 23.2 0.37 55.6 0.63

0.81 97.3 0.77 98.6 0.66 98.0 0.83

0.78 68.2 0.72 50.7 0.63 83.9 0.83

0.45 20.8 0.35 11.1 0.29 40.3 0.58

– 89.4 – 86.6 – 92.3 –

ultipass: multipass transmembrane protein; lipid: lipid chain-anchored
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former four modules, module 5 extracted the features from
the protein sequences rather than from the protein profiles.
It was not surprising that the overall accuracy of module 5
(86.6%) was lower than other profile-based modules. Since
the protein profile represents the amino acid distribution of
a family of aligned homologous proteins, it includes more
worthy information for membrane protein prediction.

3.2. Result of SVM fusion

We fuse all modules because we assume that the feature
vectors extracted by different modules provide comple-
mentary information that has potential to further improve
the prediction performance. From Table 2 we noticed that
these modules have different advantages for different
membrane protein types. For example, module 2 per-
formed best for type-I transmembrane protein, lipid-chain
anchored membrane protein, and GPI-anchored mem-
brane protein, while module 3 prefered on type-II
transmembrane protein.

The result of the SVM fusion were listed in the last
column of Tables 2 and 3. The overall accuracy of the SVM
fusion reached 92.3%, which was slightly higher than that
of module 2 (the module with the highest overall accuracy).
The result of the SVM fusion was also compared with
that of the method introduced by Cai and Chou (2006),
in which the features are extracted from functional
domain composition and pseudo-amino acid composition
(Table 3). The result of Cai and Chou’s method was
obtained by leave-one-out cross validation test (jackknife)
and the result of IAMPC was obtained by five-fold cross
validation test(5FCV) to save computational time. The
overall accuracy of IAMPC reached 92.3% and that of Cai
and Chou’s method reached 91.3%. Because of the
different ways of cross validation (5FCV vs. jackknife),
the two results can be regarded as comparable. In addition,
the prediction accuracies of IAMPC and those of Cai and
Chou’s method were complemental for different types of
membrane proteins. From Table 3, IAMPC achieved
higher accuracy for lipid chain-anchored membrane
proteins and Cai and Chou’s method achieved higher
accuracy for type-II membrane proteins and GPI-anchored
Table 3

Membrane

type

Functional-domain-

based method

IAMPC (SVM fusion)

Acc(%) Acc(%) MCC

Type-I 83.6 83.1 0.82

Type-II 71.4 55.6 0.63

Multipass 97.6 98.0 0.83

Lipid 61.0 83.9 0.83

GPI 50.0 40.3 0.58

Overall 91.3 92.3 –

Type-I: Type-I membrane protein; Type-II: Type-II membrane protein;

multipass: multipass transmembrane protein; lipid: lipid chain-anchored

membrane protein; GPI: GPI-anchored membrane protein.
membrane proteins. The two methods achieved compar-
able prediction accuracy for type-II membrane proteins
and multipass transmembrane membrane proteins. There-
fore, our future study is attempting to fuse IAMPC
with Cai and Chou’s method to further improve the
prediction accuracy.

4. Conclusion

This paper introduces an integrative method (IAMPC)
to predict the types of membrane proteins from their
sequence and position-specific scoring matrix. IAMPC is
composed of five individual modules, each of which can
implement the prediction independently. Module 1–module
4 extract different features from the position-specific
scoring matrices and the last module extracts residue-
couple composition from the primary sequences of
proteins. The SVM fusion is used to fuse the output of
every module for the final prediction. The overall accuracy
of IAMPC reaches 92.3%, which is comparable with that
of Cai and Chou’s method. In addition, IAMPC and Cai
and Chou’s method have different advantages for various
types of membrane proteins. Therefore, IAMPC plays a
complementary role to Cai and Chou’s method.
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